Metabolic uBiomic by Alimentum Labs

Purchase Options
Delivery Frequency

Metabolic uBiomic by Alimentum Labs

GLP-1 Probiotic for a Healthy Metabolism

Metabolic uBiomic naturally increases GLP-1 to curb cravings, maintain a healthy weight, and regulate blood sugar by lowering glucose spikes. Works best when paired with Metabolic Superfood.

These scientifically-backed probiotic strains work together to enhance metabolic health by improving gut barrier integrity, reducing inflammation, and optimizing glucose and lipid metabolism. Key strains like Akkermansia muciniphila and Christensenella minuta boost insulin sensitivity and support weight management, while butyrate-producing bacteria like Butyricicoccus pullicaecorum and Eubacterium hallii strengthen gut health and regulate inflammation. Additional strains, such as Lactobacillus acidophilus and Bifidobacterium longum, further refine the gut microbiome, promoting a balanced metabolism, reduced cravings, and improved energy utilization. This next-generation probiotic powerhouse helps optimize metabolic function, making it a game-changer for long-term metabolic health.

  • Re-establish Lost Keystone Species
  • Natural GLP-1 Support
  • Correct Insulin Resistance
  • Protect Heart Health
  • Regulate Cholesterol Levels
  • Support Weight Management
  • Manage Appetite
  • Encourage a Diverse Gut Microbiome

In Depth

Metabolic health refers to the body's ability to regulate essential functions like blood sugar control, fat metabolism, and inflammation, which are key to maintaining overall well-being and preventing conditions such as obesity, diabetes, and cardiovascular disease. The gut microbiome, a diverse community of microbes living in the digestive system, plays a crucial role in metabolic health. It helps with digestion, nutrient absorption, and the production of short-chain fatty acids (SCFAs), such as butyrate, that regulate inflammation and improve insulin sensitivity. Certain beneficial bacteria, like Akkermansia muciniphila, also influence the release of hormones such as GLP-1, which helps control blood sugar, appetite, and insulin secretion. A balanced and healthy gut microbiome is essential for supporting these processes and maintaining metabolic balance.

Poor diet and lifestyle choices and/or dietary and environmental exposures or stressors can significantly disrupt both metabolic health and the gut microbiome. This can lead to imbalances in the gut microbiome, reducing the diversity of beneficial bacteria while promoting the growth of harmful microbes. This disruption impairs the microbiome's ability to regulate digestion, produce short-chain fatty acids (SCFAs), and support immune function. Additionally, it can contribute to increased inflammation, insulin resistance, and dysregulated lipid metabolism, which are key factors in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Sedentary behavior, stress, and insufficient sleep further exacerbate these issues by negatively affecting gut health and disrupting hormonal balance. Together, these factors create a vicious cycle that harms both the gut microbiome and overall metabolic health, increasing the risk of developing chronic health conditions.

Metabolic μBiomic supports healthy metabolic function by promoting a balanced gut microbiome and assisting in the normal operation of key metabolic processes. A balanced gut microbiome is associated with maintaining insulin sensitivity, normal blood sugar levels, efficient fat metabolism, and a well-regulated inflammatory response—factors that contribute to overall metabolic wellness. Bacteria such as Akkermansia muciniphila and Butyricicoccus pullicaecorum can enhance gut barrier function, support inflammatory response, and support a regulated glucose and lipid metabolism, all of which help maintain healthy blood sugar levels, prevent insulin resistance and avoid high cholesterol. Strains like Eubacterium rectale and Lactobacillus bulgaricus produce short-chain fatty acids (SCFAs) that nourish gut cells, improve insulin sensitivity, and reduce harmful inflammation. Additionally, bacteria like Bifidobacterium longum and Lacticaseibacillus casei promote a healthier gut microbiome by increasing beneficial bacteria. These probiotics can modulate important hormones like GLP-1, which regulate insulin secretion and appetite, contributing to better glucose control and reduced fat accumulation. By maintaining a healthy microbiome and supporting metabolic functions, these probiotics help resist the effects of modern diets and lifestyles that can lead to metabolic disorders.

Key Features of Metabolic uBiomic

  • GLP-1 Support:Probiotics like Akkermansia muciniphila can enhance levels of glucagon-like peptide-1 (GLP-1), a hormone that improves insulin secretion, suppresses appetite, and regulates gastric emptying. By modulating gut hormones such as GLP-1, these bacteria help improve insulin sensitivity, glucose homeostasis, and overall metabolic control, making them promising candidates for metabolic disease management.
  • Insulin Sensitivity and Cholesterol Regulation: Several probiotics, including Lacticaseibacillus casei, Bifidobacterium longum, and Lactobacillus gasseri, can improve insulin sensitivity by reducing insulin resistance and enhancing glucose metabolism. Additionally, they may help regulate lipid profiles by lowering LDL cholesterol levels and promoting higher HDL cholesterol, which are essential for preventing metabolic disorders like obesity and type 2 diabetes.
  • Short-Chain Fatty Acid (SCFA) Production and Gut Health:Probiotics like Eubacterium rectale, Butyricicoccus pullicaecorum, and Lactobacillus bulgaricus produce short-chain fatty acids (SCFAs) such as butyrate, which serve as an energy source for gut cells, enhance gut barrier integrity, reduce inflammation, and support lipid metabolism. These SCFAs play a crucial role in maintaining a healthy gut environment and improving metabolic function.
  • Impact on Gut Microbiota and Inflammation: Probiotics like Christensenella minuta and Lacticaseibacillus casei modulate gut microbiota composition, reduce pathogenic microbes, and control systemic inflammation, thus supporting overall metabolic balance and reducing risks of metabolic disorders.

How to Use GLP-1 Probiotics

Take a high-quality probiotic supplement with strains known to enhance GLP-1. Pair with prebiotics (fiber-rich foods) to fuel beneficial bacteria. Maintain a healthy diet with fermented foods to support gut health.

Contains:

  • cGMP facility
  • Vegan
  • Non-GMO
  • Gluten Free
  • Dairy Free
  • No Sugar

Count: 60 capsules

Directions: Take 2 capsules daily for 30 days, or as directed by your health care provider. Refrigerate after opening to optimize shelf life. We highly recommend Metabolic μBiomic be paired with its synergistic prebiotic formula, Metabolic Superfood.

**Individual needs may vary; please consult your practitioner before altering the prescribed doses or protocols.

Frequently Bought Together:

Disclaimer: These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.

References: 

  1. Rodrigues, V. F.; Elias-Oliveira, J.; Pereira, Í. S.; Pereira, J. A.; Barbosa, S. C.; Machado, M. S. G.; Carlos, D. Akkermansia Muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front. Immunol. 2022, 13. https://doi.org/10.3389/fimmu.2022.934695.
  2. Yoon, H. S.; Cho, C. H.; Yun, M. S.; Jang, S. J.; You, H. J.; Kim, J.; Han, D.; Cha, K. H.; Moon, S. H.; Lee, K.; Kim, Y.-J.; Lee, S.-J.; Nam, T.-W.; Ko, G. Akkermansia Muciniphila Secretes a Glucagon-like Peptide-1-Inducing Protein That Improves Glucose Homeostasis and Ameliorates Metabolic Disease in Mice. Nat. Microbiol. 2021, 6 (5), 563–573. https://doi.org/10.1038/s41564-021-00880-5.
  3. Boesmans, L.; Valles-Colomer, M.; Wang, J.; Eeckhaut, V.; Falony, G.; Ducatelle, R.; Van Immerseel, F.; Raes, J.; Verbeke, K. Butyrate Producers as Potential Next-Generation Probiotics: Safety Assessment of the Administration of Butyricicoccus Pullicaecorum to Healthy Volunteers. mSystems 2018, 3 (6), 10.1128/msystems.00094-18. https://doi.org/10.1128/msystems.00094-18.
  4. Geirnaert, A.; Steyaert, A.; Eeckhaut, V.; Debruyne, B.; Arends, J. B. A.; Van Immerseel, F.; Boon, N.; Van de Wiele, T. Butyricicoccus Pullicaecorum, a Butyrate Producer with Probiotic Potential, Is Intrinsically Tolerant to Stomach and Small Intestine Conditions. Anaerobe 2014, 30, 70–74. https://doi.org/10.1016/j.anaerobe.2014.08.010.
  5. Eeckhaut, V.; Wang, J.; Van Parys, A.; Haesebrouck, F.; Joossens, M.; Falony, G.; Raes, J.; Ducatelle, R.; Van Immerseel, F. The Probiotic Butyricicoccus Pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Front. Microbiol. 2016, 7. https://doi.org/10.3389/fmicb.2016.01416. 
  6. Grahnemo, L.; Nethander, M.; Coward, E.; Gabrielsen, M. E.; Sree, S.; Billod, J.-M.; Sjögren, K.; Engstrand, L.; Dekkers, K. F.; Fall, T.; Langhammer, A.; Hveem, K.; Ohlsson, C. Identification of Three Bacterial Species Associated with Increased Appendicular Lean Mass: The HUNT Study. Nat. Commun. 2023, 14 (1), 2250. https://doi.org/10.1038/s41467-023-37978-9.
  7. Prudêncio, A. P. A.; Fonseca, D. C.; Machado, N. M.; Alves, J. T. M.; Sala, P.; Fernandes, G. R.; Torrinhas, R. S.; Waitzberg, D. L. Red Meat Intake, Indole-3-Acetate, and Dorea Longicatena Together Affect Insulin Resistance after Gastric Bypass. Nutrients 2023, 15 (5), 1185. https://doi.org/10.3390/nu15051185.
  8. Haro, C.; Garcia-Carpintero, S.; Alcala-Diaz, J. F.; Gomez-Delgado, F.; Delgado-Lista, J.; Perez-Martinez, P.; Rangel Zuñiga, O. A.; Quintana-Navarro, G. M.; Landa, B. B.; Clemente, J. C.; Lopez-Miranda, J.; Camargo, A.; Perez-Jimenez, F. The Gut Microbial Community in Metabolic Syndrome Patients Is Modified by Diet. J. Nutr. Biochem. 2016, 27, 27–31. https://doi.org/10.1016/j.jnutbio.2015.08.011.
  9. Richie, T. G.; Wiechman, H.; Ingold, C.; Heeren, L.; Kamke, A.; Pogranichniy, S.; Monk, K.; Summers, T.; Ran, Q.; Sarkar, S.; Plattner, B. L.; Sidebottom, A. M.; Chang, E.; Lee, S. T. M. Eubacterium Rectale Detoxification Mechanism Increases Resilience of the Gut Environment. bioRxiv 2024, 2024.05.09.593360. https://doi.org/10.1101/2024.05.09.593360.
  10. Engels, C.; Ruscheweyh, H.-J.; Beerenwinkel, N.; Lacroix, C.; Schwab, C. The Common Gut Microbe Eubacterium Hallii Also Contributes to Intestinal Propionate Formation. Front. Microbiol. 2016, 7. https://doi.org/10.3389/fmicb.2016.00713.
  11. Udayappan, S.; Manneras-Holm, L.; Chaplin-Scott, A.; Belzer, C.; Herrema, H.; Dallinga-Thie, G. M.; Duncan, S. H.; Stroes, E. S. G.; Groen, A. K.; Flint, H. J.; Backhed, F.; de Vos, W. M.; Nieuwdorp, M. Oral Treatment with Eubacterium Hallii Improves Insulin Sensitivity in Db/Db Mice. Npj Biofilms Microbiomes 2016, 2 (1), 1–10. https://doi.org/10.1038/npjbiofilms.2016.9. 
  12. Ignatyeva, O.; Tolyneva, D.; Kovalyov, A.; Matkava, L.; Terekhov, M.; Kashtanova, D.; Zagainova, A.; Ivanov, M.; Yudin, V.; Makarov, V.; Keskinov, A.; Kraevoy, S.; Yudin, S. Christensenella Minuta, a New Candidate next-Generation Probiotic: Current Evidence and Future Trajectories. Front. Microbiol. 2024, 14. https://doi.org/10.3389/fmicb.2023.1241259.
  13. Akbuğa-Schön, T.; Suzuki, T. A.; Jakob, D.; Vu, D. L.; Waters, J. L.; Ley, R. E. The Keystone Gut Species Christensenella Minuta Boosts Gut Microbial Biomass and Voluntary Physical Activity in Mice. mBio 15 (2), e02836-23. https://doi.org/10.1128/mbio.02836-23.
  14. Mazier, W.; Le Corf, K.; Martinez, C.; Tudela, H.; Kissi, D.; Kropp, C.; Coubard, C.; Soto, M.; Elustondo, F.; Rawadi, G.; Claus, S. P. A New Strain of Christensenella Minuta as a Potential Biotherapy for Obesity and Associated Metabolic Diseases. Cells 2021, 10 (4), 823. https://doi.org/10.3390/cells10040823.
  15. Brandão, L. R.; de Brito Alves, J. L.; da Costa, W. K. A.; Ferreira, G. de A. H.; de Oliveira, M. P.; Gomes da Cruz, A.; Braga, V. de A.; Aquino, J. de S.; Vidal, H.; Noronha, M. F.; Cabral, L.; Pimentel, T. C.; Magnani, M. Live and Ultrasound-Inactivated Lacticaseibacillus Casei Modulate the Intestinal Microbiota and Improve Biochemical and Cardiovascular Parameters in Male Rats Fed a High-Fat Diet. Food Funct. 2021, 12 (12), 5287–5300. https://doi.org/10.1039/d1fo01064f.
  16. Pimentel, T. C.; Brandão, L. R.; de Oliveira, M. P.; da Costa, W. K. A.; Magnani, M. Health Benefits and Technological Effects of Lacticaseibacillus Casei-01: An Overview of the Scientific Literature. Trends Food Sci. Technol. 2021, 114, 722–737. https://doi.org/10.1016/j.tifs.2021.06.030.
  17. Giron, M.; Thomas, M.; Jarzaguet, M.; Mayeur, C.; Ferrere, G.; Noordine, M.-L.; Bornes, S.; Dardevet, D.; Chassard, C.; Savary-Auzeloux, I. Lacticaseibacillus Casei CNCM I-5663 Supplementation Maintained Muscle Mass in a Model of Frail Rodents. Front. Nutr. 2022, 9, 928798. https://doi.org/10.3389/fnut.2022.928798.
  18. Qi, W.; Li, X.-X.; Guo, Y.-H.; Bao, Y.-Z.; Wang, N.; Luo, X.-G.; Yu, C.-D.; Zhang, T.-C. Integrated Metabonomic-Proteomic Analysis Reveals the Effect of Glucose Stress on Metabolic Adaptation of Lactococcus Lactis Ssp. Lactis CICC23200. J. Dairy Sci. 2020, 103 (9), 7834–7850. https://doi.org/10.3168/jds.2019-17810.
  19. Jeong, H.; Hwang, U.-S.; Choi, H.; Park, Y.-S. Assessing the Anti-Obesity Potential of Lactococcus Lactis Subsp. Lactis CAB701: Modulation of Adipocyte Differentiation and Lipid Metabolism in In Vitro and In Vivo Models. Probiotics Antimicrob. Proteins 2023. https://doi.org/10.1007/s12602-023-10198-9.
  20. Kondrotiene, K.; Zavistanaviciute, P.; Aksomaitiene, J.; Novoslavskij, A.; Malakauskas, M. Lactococcus Lactis in Dairy Fermentation—Health-Promoting and Probiotic Properties. Fermentation 2024, 10 (1), 16. https://doi.org/10.3390/fermentation10010016.
  21. Chu, P.-Y.; Yu, Y.-C.; Pan, Y.-C.; Dai, Y.-H.; Yang, J.-C.; Huang, K.-C.; Wu, Y.-C. The Efficacy of Lactobacillus Delbrueckii Ssp. Bulgaricus Supplementation in Managing Body Weight and Blood Lipids of People with Overweight: A Randomized Pilot Trial. Metabolites 2024, 14 (2), 129. https://doi.org/10.3390/metabo14020129.
  22. Lin, Y.-K.; Lin, Y.-H.; Chiang, C.-F.; Yeh, T.-M.; Shih, W.-L. Lactobacillus Delbrueckii Subsp. Bulgaricus Strain TCI904 Reduces Body Weight Gain, Modulates Immune Response, Improves Metabolism and Anxiety in High Fat Diet-Induced Obese Mice. 3 Biotech 2022, 12 (12), 341. https://doi.org/10.1007/s13205-022-03356-3.
  23. Yang, Y.; Wang, Y.; Cao, X.; Shi, L.; Wang, Y. Lactobacillus Buchneri Ameliorates Obesity-Related Disorders Induced by High-Fat and High-Cholesterol Diet in Mice. Food Humanity 2024, 3, 100317. https://doi.org/10.1016/j.foohum.2024.100317.
  24. Cabello-Olmo, M.; Oneca, M.; Urtasun, R.; Pajares, M. J.; Goñi, S.; Riezu-Boj, J. I.; Milagro, F. I.; Ayo, J.; Encio, I. J.; Barajas, M.; Araña, M. Pediococcus Acidilactici pA1c® Improves the Beneficial Effects of Metformin Treatment in Type 2 Diabetes by Controlling Glycaemia and Modulating Intestinal Microbiota. Pharmaceutics 2023, 15 (4), 1203. https://doi.org/10.3390/pharmaceutics15041203.
  25. Schellekens, H.; Torres-Fuentes, C.; van de Wouw, M.; Long-Smith, C. M.; Mitchell, A.; Strain, C.; Berding, K.; Bastiaanssen, T. F. S.; Rea, K.; Golubeva, A. V.; Arboleya, S.; Verpaalen, M.; Pusceddu, M. M.; Murphy, A.; Fouhy, F.; Murphy, K.; Ross, P.; Roy, B. L.; Stanton, C.; Dinan, T. G.; Cryan, J. F. Bifidobacterium Longum Counters the Effects of Obesity: Partial Successful Translation from Rodent to Human. EBioMedicine 2020, 63, 103176. https://doi.org/10.1016/j.ebiom.2020.103176.
  26. Kim, G.; Yoon, Y.; Park, J. H.; Park, J. W.; Noh, M.; Kim, H.; Park, C.; Kwon, H.; Park, J.; Kim, Y.; Sohn, J.; Park, S.; Kim, H.; Im, S.-K.; Kim, Y.; Chung, H. Y.; Nam, M. H.; Kwon, J. Y.; Kim, I. Y.; Kim, Y. J.; Baek, J. H.; Kim, H. S.; Weinstock, G. M.; Cho, B.; Lee, C.; Fang, S.; Park, H.; Seong, J. K. Bifidobacterial Carbohydrate/Nucleoside Metabolism Enhances Oxidative Phosphorylation in White Adipose Tissue to Protect against Diet-Induced Obesity. Microbiome 2022, 10 (1), 188. https://doi.org/10.1186/s40168-022-01374-0.
  27. Zhou, L.; Gong, L.; Liu, Z.; Xiang, J.; Ren, C.; Xu, Y. Probiotic Interventions with Highly Acid-Tolerant Levilactobacillus Brevis Strains Improve Lipid Metabolism and Gut Microbial Balance in Obese Mice. Food Funct. 2025, 16 (1), 112–132. https://doi.org/10.1039/D4FO03417A.
  28. Fan, X.; Zhang, Q.; Guo, W.; Wu, Q.; Hu, J.; Cheng, W.; Lü, X.; Rao, P.; Ni, L.; Chen, Y.; Chen, L. The Protective Effects of Levilactobacillus Brevis FZU0713 on Lipid Metabolism and Intestinal Microbiota in Hyperlipidemic Rats. Food Sci. Hum. Wellness 2023, 12 (5), 1646–1659. https://doi.org/10.1016/j.fshw.2023.02.021.
  29. Pérez-Díaz, I. M.; Page, C. A.; Mendez-Sandoval, L.; Johanningsmeier, S. D. Levilactobacillus Brevis, Autochthonous to Cucumber Fermentation, Is Unable to Utilize Citric Acid and Encodes for a Putative 1,2-Propanediol Utilization Microcompartment. Front. Microbiol. 2023, 14. https://doi.org/10.3389/fmicb.2023.1210190.
  30. Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium Animalis Subsp. Lactis GCL2505 Modulates Host Energy Metabolism via the Short-Chain Fatty Acid Receptor GPR43. Sci. Rep. 2020, 10 (1), 4158. https://doi.org/10.1038/s41598-020-60984-6.
  31. Uusitupa, H.-M.; Rasinkangas, P.; Lehtinen, M. J.; Mäkelä, S. M.; Airaksinen, K.; Anglenius, H.; Ouwehand, A. C.; Maukonen, J. Bifidobacterium Animalis Subsp. Lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020, 12 (4), 892. https://doi.org/10.3390/nu12040892.
  32. Tang, J.; Wei, Y.; Pi, C.; Zheng, W.; Zuo, Y.; Shi, P.; Chen, J.; Xiong, L.; Chen, T.; Liu, H.; Zhao, Q.; Yin, S.; Ren, W.; Cao, P.; Zeng, N.; Zhao, L. The Therapeutic Value of Bifidobacteria in Cardiovascular Disease. Npj Biofilms Microbiomes 2023, 9 (1), 1–14. https://doi.org/10.1038/s41522-023-00448-7.
  33. Oksaharju, A.; Kooistra, T.; Kleemann, R.; Duyvenvoorde, W. van; Miettinen, M.; Lappalainen, J.; Lindstedt, K. A.; Kovanen, P. T.; Korpela, R.; Kekkonen, R. A. Effects of Probiotic Lactobacillus Rhamnosus GG and Propionibacterium Freudenreichii Ssp. Shermanii JS Supplementation on Intestinal and Systemic Markers of Inflammation in ApoE*3Leiden Mice Consuming a High-Fat Diet. Br. J. Nutr. 2013, 110 (1), 77–85. https://doi.org/10.1017/S0007114512004801.
  34. Ondee, T.; Pongpirul, K.; Visitchanakun, P.; Saisorn, W.; Kanacharoen, S.; Wongsaroj, L.; Kullapanich, C.; Ngamwongsatit, N.; Settachaimongkon, S.; Somboonna, N.; Leelahavanichkul, A. Lactobacillus Acidophilus LA5 Improves Saturated Fat-Induced Obesity Mouse Model through the Enhanced Intestinal Akkermansia Muciniphila. Sci. Rep. 2021, 11 (1), 6367. https://doi.org/10.1038/s41598-021-85449-2.
  35. Han, M.; Liao, W.; Dong, Y.; Bai, C.; Gai, Z. Lacticaseibacillus Rhamnosus Hao9 Exerts Antidiabetic Effects by Regulating Gut Microbiome, Glucagon Metabolism, and Insulin Levels in Type 2 Diabetic Mice. Front. Nutr. 2023, 9. https://doi.org/10.3389/fnut.2022.1081778.
  36. Choi, B. S.-Y.; Brunelle, L.; Pilon, G.; Cautela, B. G.; Tompkins, T. A.; Drapeau, V.; Marette, A.; Tremblay, A. Lacticaseibacillus Rhamnosus HA-114 Improves Eating Behaviors and Mood-Related Factors in Adults with Overweight during Weight Loss: A Randomized Controlled Trial. Nutr. Neurosci. 2023, 26 (7), 667–679. https://doi.org/10.1080/1028415X.2022.2081288.
  37. Kadooka, Y.; Sato, M.; Ogawa, A.; Miyoshi, M.; Uenishi, H.; Ogawa, H.; Ikuyama, K.; Kagoshima, M.; Tsuchida, T. Effect of Lactobacillus Gasseri SBT2055 in Fermented Milk on Abdominal Adiposity in Adults in a Randomised Controlled Trial. Br. J. Nutr. 2013, 110 (9), 1696–1703. https://doi.org/10.1017/S0007114513001037.
  38. Duysburgh, C.; Miclotte, L.; Green, J. B.; Watts, K. T.; Sardi, M. I.; Chakrabarti, A.; Khafipour, E.; Marzorati, M. Saccharomyces Cerevisiae Derived Postbiotic Alters Gut Microbiome Metabolism in the Human Distal Colon Resulting in Immunomodulatory Potential in Vitro. Front. Microbiol. 2024, 15. https://doi.org/10.3389/fmicb.2024.1358456.